Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Nanomedicine ; 19: 2409-2428, 2024.
Article in English | MEDLINE | ID: mdl-38476281

ABSTRACT

Background and Purpose: Nitidine chloride (NC) is a botanical drug renowned for its potent anti-inflammatory, antimalarial, and hepatocellular carcinoma-inhibiting properties; however, its limited solubility poses challenges to its development and application. To address this issue, we have devised a colon-targeted delivery system (NC-CS/PT-NPs) aimed at modulating the dysbiosis of the gut microbiota by augmenting the interaction between NC and the intestinal microbiota, thereby exerting an effect against nonalcoholic fatty liver disease. Methods: The NC-CS/PT-NPs were synthesized using the ion gel method. Subsequently, the particle size distribution, morphology, drug loading efficiency, and release behavior of the NC-CS/PT-NPs were characterized. Furthermore, the impact of NC-CS/PT-NPs on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice was investigated through serum biochemical analysis, ELISA, and histochemical staining. Additionally, the influence of NC-CS/PT-NPs on intestinal microbiota was analyzed using 16S rDNA gene sequencing. Results: The nanoparticles prepared in this study have an average particle size of (255.9±5.10) nm, with an encapsulation rate of (72.83±2.13) % and a drug loading of (4.65±0.44) %. In vitro release experiments demonstrated that the cumulative release rate in the stomach and small intestine was lower than 22.0%, while it reached 66.75% in the colon. In vivo experiments conducted on HFD-induced NAFLD mice showed that treatment with NC-CS/PT-NPs inhibited weight gain, decreased serum aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and lipid levels, improved liver and intestinal inflammation, and altered the diversity of gut microbiota in mice. Conclusion: This study provides new evidence for the treatment of NAFLD through the regulation of gut microbiota using active ingredients from traditional Chinese medicine.


Subject(s)
Benzophenanthridines , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Liver , Intestine, Small , Diet, High-Fat , Mice, Inbred C57BL
2.
J Ethnopharmacol ; 254: 112714, 2020 May 23.
Article in English | MEDLINE | ID: mdl-32105750

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Mallotus apelta (Lour.) Muell.Arg. is a well-known traditional Chinese medicine (TCM) used for anti-inflammatory, hemostasis and chronic hepatitis. AIM: The purpose of this study was to explore the antifibrotic effect of total flavonoids of Mallotus apelta leaf (TFM) and its potential mechanism. METHODS: Hepatic fibrosis was induced by carbon tetrachloride (CCl4) in rats. The CCl4-induced rats received intragastric administration of colchicine (0.2 mg/kg per day), TFM (25, 50, 100 mg/kg per day) and the equal vehicle was given to normal rats. Pathological evaluation in hepatic tissue were examined by hematoxylin and eosin (HE) staining. And the levels of serum biochemical parameters were detected by automatic biochemical analysis. Meanwhile, the collagen deposition in liver was observed by staining with Masson's trichrome. Collagenic parameters and inflammatory factors were measured by enzyme-linked immunosorbent assay (ELISA) kits. Additionally, corresponding assay kit was used to estimate the antioxidant enzyme and lipid peroxidation. In order to explore the potential mechanism of anti-fibrotic effects in TFM, the expressions of liver fibrosis related gene and protein were analyzed by real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot. RESULTS: The CCl4-induced hepatic fibrosis were inhibited dose-dependently in rats by TFM. The results showed that the key hallmarks of liver injury including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin (ALB) and total protein (TP) in the serum were reversed in CCl4-induced hepatic fibrosis rats which were treated by TFM. Furthermore, TFM significantly alleviates collagen accumulation and reduces the contents of hydroxyproline (Hyp), Type III precollagen (PC-III), collagen I (Col I), hyaluronic acid (HA) and laminin (LN). RT-PCR and Western blot results showed that TFM markedly inhibits liver fibrosis hallmark factor α-smooth muscle actin (α-SMA) expressions in CCl4-induced hepatic fibrosis rats. Moreover, TFM alleviated the oxidative stress and lipid peroxidation in rats induced by CCl4. TFM also attenuated the pro-inflammatory cytokines including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) via inhibiting nuclear factor-κB (NF-κB) activation. Meanwhile, transforming growth factor-ß1 (TGF-ß1)/Smad signaling pathway was inhibited by TFM treatment. CONCLUSIONS: TFM can alleviate CCl4-induced hepatic fibrosis in rats, which potential mechanism may be due to its ability of reducing ECM accumulation, improving antioxidant and regulating TGF-ß1/Smad signaling pathways and NF-κB-dependent inflammatory response.


Subject(s)
Flavonoids/therapeutic use , Liver Cirrhosis/drug therapy , Mallotus Plant , Protective Agents/therapeutic use , Animals , Carbon Tetrachloride , Collagen/metabolism , Cytokines/blood , Cytokines/genetics , Flavonoids/pharmacology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Cirrhosis/blood , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Plant Leaves , Protective Agents/pharmacology , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL